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Foreword of the Chapter

• By exploiting the properties of superposition and time 
invariance, if we know the response of an LTI system to 
some inputs, we actually know the response to many 
inputs

• If we can find sets of “basic” signals so that

▫ We can represent rich classes of signals as linear 
combinations of these building block signals.

▫ The response of LTI Systems to these basic signals are 
both simple and insightful.



• Candidate sets of basic signal

▫ Unit impulse function and its delays

▫ Complex exponential signals  (Eigenfunctions of all 
LTI systems)

• In this Chapter, we will focus on: why, how, what

▫ Can we represent aperiodic signals as “sums or 
integrals” of complex exponentials

▫ How to represent aperiodic signals as “sums or 
integrals” of complex exponentials

▫ What kinds of aperiodic signals can we represent as 
“sums or integrals” of complex exponentials? (how 
large types of such signals can benefit from the Fourier 
Transform?)
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4.0 Introduction 

• Fourier Series Representation

▫ It decomposes any periodic function or periodic 
signal into the sum of a (possibly infinite) set of 
simple oscillating functions, namely sines and 
cosines (or, equivalently, complex exponentials). 
The discrete-time Fourier transform is a periodic 

• Fourier Transform 

▫ A representation of aperiodic signals as linear 
combinations of complex exponentials



T1 kept fixed T increases

Motivating Example

Discrete 

frequency 

points 

become 

denser in ω 

as T 

increases



• Then for periodic square wave, the spectrum of x(t), i.e. {ak}, 

are                          , the spectrum space is   

• Then for square pulse, the spectrum X(jω) are                 , the 

spectrum space is                    , i.e. the complex exponentials 

occur at a continuum of frequencies 
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4.1.1 Development

• To derive the spectrum for aperiodic signals x(t), we can 

approximate it by a periodic signal       with infinite period 
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Assuming (1) is converged,  we define



• Thus 
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4.1.2 Convergence

• What kinds of signals can be represented in Fourier 
Transform (satisfies one of the following 2 conditions)

▫ 1、Finite energy

Then we are guaranteed that:

 𝑋(𝑗𝜔) is finite
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▫ 2、Dirichlet conditions, require that

 𝑥(𝑡) be absolutely integrable

 𝑥(𝑡) have a finite number of  maxima and minima 
within any finite interval

 𝑥(𝑡) have a finite number of discontinuities within 
any finite interval. Furthermore, each of these 
discontinuities must be finite

Then we guarantee that

 ො𝑥 𝑡 is equal to 𝑥(𝑡) for any 𝑡 except at a 
discontinuity, where it is equal to the average of the 
values on either side of the discontinuity

 𝑋(𝑗𝜔) is finite



Examples 
• Exponential function

Magnitude Spectrum Phase Spectrum

Even symmetry Odd symmetry

If α is complex, x(t) 

is absolutelty 

integrable as long 

as Re{α}>0
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Examples

• Unit impulse 
𝑥 𝑡 = 𝛿(𝑡)
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• DC Signal
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Example 

• Rectangle Pulse Signal
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• For  a periodic signal x(t) with fundamental 
frequency                 , what’s its FT?
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• Thanks to the impulse function, suppose
𝑋 𝑗𝜔 = 𝛿 𝜔 − 𝜔0
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• So for a periodic signal x(t) with fundamental 
frequency              , its FT is:

▫ Fourier Series Coefficient

▫ Fourier Transform

• The FT can be interpreted as a train of impulses 
occurring at the harmonically related frequencies and for 
which the area of the impulse at the kth harmonic 
frequency kω0 is 2π times the kth F.S. coefficient ak
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• Example: )cos()( 0ttx 
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• Example: 
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Note:   (period in t) T ⇔ (period in ω) 2π/T
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• Linearity

• Time Shifting
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• Time and Frequency Scaling
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• Example: Determine the Fourier Transform of the 
following signals
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• Differentiation

• The differentiation operation enhances high-frequency 
components in the effective frequency band of a signal

• Without any further information about the DC 
component of the original signal, we cannot completely 
recover it from its differentials
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• Integration
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• 𝑢 𝑡 =
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• 𝑢 𝑡 =
1+𝑠𝑔𝑛(𝑡)
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• Example: triangle pulse
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• 2 approaches to calculate X(0) ：
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• Example: sgn(t) 
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• By defining the sgn function as a special 
exponential function

• By representing the sgn function in terms of unit 
step functions
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• By exploiting integration property
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• Duality

▫ Both time and frequency are continuous and in general aperiodic

▫ Suppose f() and g() are two functions related by

Same except for 

these differences
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• Example
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• Example

• Example
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• Other duality properties

▫ （1） Frequency Shifting
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▫ （2）Differentiation in frequency domain

▫ （3）Integration in frequency domain
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• Example :To determine x(t) according to X(jω)
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• Conjugation and Conjugate Symmetry
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• Example:
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• Parseval’s Relation
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• Example1：

• Example2：
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• Example:

-1-2 1 2

1

2

)(tx

t

To use the FT of typical signals and FT 

properties to determine the FT of the following 

signals



• Solution 1:

2( ) 2 ( ) ( 2) ( 2)x t g t u t u t     

2

1
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1-1
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+ +

gτ(t) is the rectangle pulse with width of  τ
and unit magnitude 
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• Solution 2: 
'
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• Example: To determine the FC of the periodic 
signal by using FT
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• Let                    be the basic signal
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• Example :To determine x(t) according to )( jX

0 0

A

|)(| jX )( jX

0 0 w

A

|)(| jX )( jX

00

2/
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1.

2.

Notes: They 

have different 

phase 

spectrum
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4.0 Introduction

4.1 The Continuous-Time Fourier Transform

4.2 The Fourier Transform for Periodic Signals

4.3 Properties of the Continuous-Time Fourier Transform

4.4 The Convolution Property

4.5 The multiplication Property

4.6 System Characterized by Linear Constant-Coefficient

Differential Equations



4.4.1 Convolution Property



• Example: the Triangle Impulse Signal



4.4.2 Frequency Response

• Definition: 






dtth )( －stable system

( )
( ) ( ) ( ) / ( )

( )

Y j
Y j X j H j H j

X j


   


 

Conditioned on:

Then: 



4.4.2 Frequency Response

• The frequency response H(jω) can completely represent 
a stable LTI system (NOT all LTI systems)

H1(jω) H2(jω) H1(jω) · H2(jω) 

Series interconnection of LTI systems (Cascaded system)

H1(jω)

H2(jω)

H1(jω) + H2(jω) 

Parallel interconnection of LTI systems



4.4.2 Frequency Response

• The frequency response is the F.T. of the impulse 
response, it captures the change in complex amplitude of 
the Fourier transform of the input at each frequency ω

▫ For a complex exponential input x(t), as a consequence of 
the eigenfunction property, the output y(t) can be expressed 
as:

▫ For a sinusoid input x(t), as a consequence of the 
eigenfunction property, the output y(t) can be expressed as: 

      jHjejHjH 

Magnitude gain Phase shifting

tjtj
ejHtyetx 0

0

0 |)()()(




  

))(cos()()()cos()( 0000  jHtjHtyttx 



• Example: Consider an LTI system with                 
If the input x(t)=sin(t), determine the  

output y(t)

• Solution:

1
( )

1
H j

j







2

1

1
( )

1

1
( )

1

( ) tan ( )

H j
j

H j

H j







 




 


 













4
sin

2

1

))1(sin()1()(


t

jHtjHty



• Example: Consider an LTI system with

for the input x(t) 

Determine the output of the system 

)()( tueth t

)()( 2 tuetx t

)(*)()( thtxty 



• Example: for a system with Gaussian response, i.e. the 
unit impulse response is Gaussian, consider the output 
of the system with a Gaussian input 

Gaussian × Gaussian = Gaussian ⇒ Gaussian ∗ Gaussian = Gaussian



Why: Log-Magnitude and Phase to illustrate the frequency 

response

𝑌(𝑗𝜔) = 𝐻 𝑗𝜔 × 𝑋 𝑗𝜔

𝑙𝑜𝑔 𝑌(𝑗𝜔) = 𝑙𝑜𝑔 𝐻 𝑗𝜔 + 𝑙𝑜𝑔 𝑋 𝑗𝜔

∠𝐻 𝑗𝜔 = ∠𝐻1 𝑗𝜔 + ∠𝐻2(𝑗𝜔)

𝐻1(𝑗𝜔) 𝐻2(𝑗𝜔)

𝑙𝑜𝑔 𝐻(𝑗𝜔) = 𝑙𝑜𝑔 𝐻1 𝑗𝜔 + 𝑙𝑜𝑔 𝐻2 𝑗𝜔

∠𝑌 𝑗𝜔 = ∠𝐻 𝑗𝜔 + ∠𝑋(𝑗𝜔)

Easy to add

Easy to add

Cascading:



How: Plotting Log-Magnitude and Phase

• a)    For real-valued signals and systems

• b)    For historical reasons, log-magnitude is usually 
plotted in units of decibels (dB):

Plot for ω ≥ 0, often with a 

logarithmic scale for 

frequency in CT

Why 20 log10(.)
power magnitude

So… 20 dB or 2 bels:

= 10 amplitude gain

= 100 power gain



• A Typical Bode plot for a second-order CT system 

20 log10|H(jω)| and ∠ H(jω) vs. log10ω



4.4.3 Filtering

－a process in which the relative complex magnitudes of the 
frequency components in a signal are changed  or some frequency 
components are completely eliminated

• Frequency-Selective Filters
—systems that are designed to pass some frequency components 

undistorted, and diminish/eliminate others significantly

• Typical types of frequency-selective filters
▫ LPF(Low-pass Filter)

▫ HPF(High-pass Filter)

▫ BPF(Band-pass Filter)

▫ BSF (Band-stop Filter
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• Example :

1/4-1/4

1

x(t)

1-1 t

。。。
。。。

)( jH

3 3



To determine the response of the LPF to 
the signal x(t)



• Some typical systems

▫ ① Delay

▫ ② Differentiator

0
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▫ ③ Integrator

when
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• Example: to determine outputs of the system 
with H(jω) in the figure with the following input 
signals

jtetx )(

)6)((

1
)(




jj
jX


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-1 1

2j

-2j

)( jH
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• Example: for the following signal x(t) with 
period of 1

To determine the output of the system with 
frequency response H(jω) with the input x(t) 






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• Solution:

∴ x(t) contains the frequency components:

Only the DC and the first order harmonic components are within

the passband of the LPF







k

k katx )(2)( 0
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

 2
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Filters

• Zero-phase shifting Ideal LPF
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• Linear Phase Ideal LPF
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Result: Linear phase ⇔ simply a rigid shift in time, no distortion

Nonlinear phase ⇔ distortion as well as shift

𝑌 𝑗𝜔 = 𝑒−𝑗𝜔𝑡0𝑋 𝑗𝜔 𝑦 𝑡 = 𝑥(𝑡 − 𝑡0)
time-shift



▫ Unit impulse response:

▫ Unit step response:
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• How do we think about signal delay when the phase is nonlinear?

Concept of Group Delay

When the signal is narrow-band and concentrated near ω0, H 

(jw) ~ linear with ω near ω0, then the differential of H (jw) at ω0

reflects the time delay. 

For frequencies “near”  ω0

For w “near”  ω0

Τ(ω0)Time delay of 

the original signal



• Non-ideal LPF 
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)()( tueth t  )()1()( tuets t

1e

)(th



1 t

1

11 e

)(ts

t


1

Unit impulse response Unit step response

•      causal  h(t <0) = 0, decaying

•      s(t) non-oscillation and non-overshoot 



• Time domain and frequency domain aspects of non-ideal filter

▫ Trade-offs between time domain and frequency domain characteristics, i.e.  the 
width of transition band ↔ the setting time of the step response 

Definitions:

Passband ripple:  δ1

Stopband ripple: δ2

Definitions:

Rise time: tr
Setting time: ts
Overshoot: Δ

Ringing frequency ωr

Passband Transition Stopband

Rise time

Setting 

time

Setting time: the time at which the step response settles to within δ 
(a specified tolerance) of its final value
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4.5.1 Multiplication Property 
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• Example :
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• Example :
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• Example :

𝑟 𝑡 = 𝑠 𝑡 × 𝑃 𝑡 ↔ 𝑅 𝑗𝜔 =
1

2𝜋
[𝑆 𝑗𝜔 ∗ 𝑃 𝑗𝜔 ]

𝐹𝑜𝑟 𝑝 𝑡 = 𝑐𝑜𝑠𝜔0𝑡 ↔ 𝑃 𝑗𝜔 = 𝜋[𝛿 𝜔 − 𝜔0 + 𝛿(𝜔 + 𝜔0)]

𝑅 𝑗𝜔 =
1

2
[𝑆(𝑗 𝜔 − 𝜔0 ) + 𝑆(𝑗 𝜔 + 𝜔0 )]



4.5.2 Modulation

• Why?

▫ More efficient to transmit E&M signals at higher frequencies

▫ Transmitting multiple signals through the same medium using different 
carriers

▫ Transmitting through “channels” with limited passbands

▫ Others...

• How?

▫ Many methods

▫ Focus here for the most part on Amplitude Modulation (AM)



Amplitude modulation

(AM)

Drawn assuming:

Modulating 

signal

Carrier 

signal

Modulated 

signal



• Synchronous Demodulation of Sinusoidal AM 

෠𝑋 𝑗𝜔 =
1

2𝜋
𝑋𝑐 𝑗𝜔 ∗ 𝐶 𝑗𝜔

=
1

2
𝑋𝑐 𝑗 𝜔 − 𝜔0 + 𝑋𝑐 𝑗 𝜔 + 𝜔0

=
1

2
X jω +

1

4
[𝑋𝑐(𝑗 𝜔 − 2𝜔0 ) +

𝑋𝑐(𝑗 𝜔 + 2𝜔0 )]

ො𝑥 𝑡 = 𝑥𝑐(𝑡) × 𝑐(𝑡)

If 𝜃 = 0

What if 𝜃 ≠ 0?



• Synchronous Demodulation (with phase error) 
in the Frequency Domain 

𝑐𝑜𝑠(𝜔𝑐𝑡 + 𝜃) ↔ 𝜋𝑒𝑗𝜃𝛿 𝜔 − 𝜔0 + 𝜋𝑒−𝑗𝜃𝛿(𝜔 + 𝜔0)



• Asynchronous Demodulation

▫ Assume ωc>> ωM, so signal envelope looks like x(t)

▫ Add same carrier with amplitude A to signal 

A = 0 ⇒ DSB/SC (Double Side Band, Suppressed Carrier)
A > 0 ⇒ DSB/WC (Double Side Band, With Carrier)



In order for it to function properly, the envelope function mustbe 

positive for all time, i.e.A+ x(t) > 0 for all t.

Demo:  Envelope detection for asynchronous demodulation.

Advantages of asynchronous demodulation:

— Simpler in design and implementation.

Disadvantages of asynchronous demodulation:

— Requires extra transmitting power [Acosωct]
2to make sure A+ 

x(t) > 0 ⇒Maximum power efficiency = 1/3 (P8.27)



• Example:
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Signal processing in 

frequency domain 



• Double-Sideband (DSB) and Single-Sideband (SSB) AM 

DSB, occupies 
2ωMbandwidth in 
ω> 0.

Each sideband 
approach only 
occupies 
ωMbandwidth in 
ω> 0.

Since x(t) and 
y(t) 

are real, from 
Conjugate 
symmetry both 
LSB and USB 
signals carry 
exactly the 

same 
information.



• Single-Sideband (SSB) AM 

Can also get SSB/SC

or SSB/WC



• An implementation of SSB modulation, p600,figure 8.21-22
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• Frequency-Division Multiplexing (FDM)
(Examples: Radio-station signals and analog cell phones)

All the channels 

can share the 

same medium.



• FDM in the Frequency-Domain



• Demultiplexing and Demodulation

▫ Channels must not overlap ⇒Bandwidth 
Allocation

▫ It is difficult (and expensive) to design a highly 
selective bandpass filter with a tunable center 
frequency

▫ Solution –Superheterodyne Receivers 

ωa needs to be tunable



• The Superheterodyne Receiver

▫ Operation principle:

— Down convert from ωc to ωIF, and use a coarse tunable BPF for 
the front end.

— Use a sharp-cutoff fixed BPF at ωIF to get rid of other signals.



4.5.3 Sampling

• Most of the signals we encounter are CT signals, e.g. x(t). How do we 
convert  them into DT signals x[n] to take advantages of the rapid 
progress and tools of digital signal processing 

▫ — Sampling, taking snap shots of x(t) every T seconds

• T –sampling period,  x[n] ≡x(nT), n= ..., -1, 0, 1, 2, ... —
Regularly spaced samples

• Applications and Examples

▫ —Digital Processing of Signals

▫ —Images in Newspapers

▫ —Sampling Oscilloscope

▫ —…

How do we perform sampling?



• Why/When Would a Set of Samples Be Adequate?
▫ Observation: Lots of signals have the same samples

▫ By sampling we throw out lots of information –all values of x(t) 
between sampling points are lost. 

▫ Key Question for Sampling:

Under what conditions can we reconstruct the

original CT signal x(t)  from its samples?



• Impulse Sampling—Multiplying x(t) by the sampling function



• Analysis of Sampling in the Frequency Domain 

Multiplication Property =>

=Sampling Frequency  



• Illustration of sampling in the frequency-domain for a band-limited 
(X(jω)=0 for |ω| > ωM) signal



• Reconstruction of x(t) from sampled signals 

If there is no overlap 

between shifted

spectra, a LPF can 

reproduce x(t) from xp(t)



Suppose x(t) is band-limited, so that 

X(jω)=0 for |ω| > ωM

Then x(t) is uniquely determined by its 

samples {x(nT)} if

where ωs = 2π/T



• Observations
▫ (1) In practice, we obviously don’t 

sample with

impulses or implement ideal 
lowpass filters

— One practical example: The Zero-
Order Hold

▫ (2) Sampling is fundamentally a 
time varying operation, since we 
multiply x(t) with a time-varying 
function p(t). However, H(jω) is the 
identity system (which is TI) for 
band-limited x(t) satisfying the 
sampling theorem (ωs > 2ωM). 

▫ (3) What if ωs <= 2ωM? Something 
different: more later.
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• Example:
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• Time-Domain Interpretation of Reconstruction of Sampled 
Signals —Band-Limited Interpolation 

The lowpass filter interpolates the samples assuming x(t)  contains no

energy at frequencies >= ωc



• Graphic Illustration of Time-Domain Interpolation

▫ Original CT signal 

▫ After Sampling

▫ After passing the LPF



• Interpolation Methods (1): Band-limited Interpolation: ideal LPF, 
i.e. sinc function in time domain
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• Interpolation Methods (2): Zero-Order Hold 
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• Interpolation Methods (3): First-Order Hold —Linear interpolation
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• Under sampling and Aliasing 

When ωs ≦ 2ωM => Under-sampling



Xr (jω)≠X(jω)                                                                          
Distortion due to 
aliasing

— Higher frequencies of x(t) are “folded back” and take on the 
“aliases”of lower frequencies

— Note that at the sample times, xr(nT) = x(nT)



• Example:

X(t) = cos(ω0t + Φ)

Sampling of cosω0t

Aliasing case:

Then with the ideal LPF with 

cut off frequency of ωM<

ωc< ωs- ω0 , the 

reconstructed signal is 

cos((ωs-ω0)t)

Ref. Q7.38



• Example: AM with an Arbitrary Periodic Carrier

C(t) – periodic with period T, carrier frequency ωc = 2π/T



• Example: Modulating a (Periodic) Rectangular Pulse Train

In practice, we can use a (periodic) rectangular pulse train instead 
of impulses, since the later is impractical





• Discussions on modulating a (Periodic) Rectangular Pulse Train

▫ 1) We get a similar picture with any c(t) that is periodic with period T 

▫ 2) As long as ωc= 2π/T > 2ωM, there is no overlap in the shifted and 

scaled replicas of X(jω). Consequently, assuming a0≠0:

x(t) can be recovered by passing y(t) through a LPF 

▫ 3) Pulse Train Modulation is the basis for Time-Division Multiplexing

▫ Assign time slots instead of frequency slots to different 

channels, e.g. AT&T wireless phones

▫ 4) Really only need samples{x(nT)} when ωc> 2ωM⇒Pulse Amplitude 

Modulation



Topic

4.0 Introduction

4.1 The Continuous-Time Fourier Transform

4.2 The Fourier Transform for Periodic Signals

4.3 Properties of the Continuous-Time Fourier Transform

4.4 The Convolution Property

4.5 The multiplication Property

4.6 System Characterized by Linear Constant-Coefficient

Differential Equations



LTI Systems Described by LCCDE’s

(Linear-constant-coefficient differential equations)

Using the Differentiation Property

Transform both sides of the 
equation

1)     Rational, can use
PFE to get h(t)

2)     If X(jω) is rational
e.g. x(t)=Σcie

-at u(t)

then Y(jω) is also 
rational

PFE: Partial-fraction expansion



• Example：
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• Zero-state response of LTI systems——Partial-fraction expansion 
method

• Example:
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• Example:                     To calculate the zero-state response of the 
system discussed in previous example
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• Homework
 BASIC PROBLEMS WITH ANSWER: 4.1, 4.4

 BASIC PROBLEMS: 4.21, 4.22, 4.25, 4.32, 6.21, 6.22, 
7.3, 7.4, 8.22, 8.30



Many Thanks 

Q & A
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