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Foreword of the Chapter

- By exploiting the properties of superposition and time
invariance, if we know the response of an LTI system to
some inputs, we actually know the response to many

Iputs If T [H] — Y [H]

Then Z{Ikiﬂk[ﬂ] — Zﬂkyk[ﬂ]
k k

- If we can find sets of “basic” signals so that
= We can represent rich classes of signals as linear
combinations of these building block signals.
= The response of LTI Systems to these basic signals are
both simple and insightful.
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- Candidate sets of basic signal
= Unit impulse function and its delays

5(t)/ S[n]
- Complex exponential signals (Eigenfunctions of all
LTI systems) el [ g% el /z"

- In this Chapter, we will focus on: why, how, what

= Can we represent aperiodic signals as “sums or
integrals” of complex exponentials

» How to represent aperiodic signals as “sums or
integrals” of complex exponentials

> 'What kinds of aperiodic signals can we represent as
“sums or integrals” of complex exponentials? (how
large types of such signals can benefit from the Fourier
Transform?)
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4.0 Introduction

 Fourier Series Representation

= It decomposes any periodic function or periodic
signal into the sum of a (possibly infinite) set of
simple oscillating functions, namely sines and
cosines (or, equivalently, complex exponentials).
The discrete-time Fourier transform is a periodic

» Fourier Transform

= A representation of aperiodic signals as linear
combinations of complex exponentials
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Motivating Example

T, kept fixed ) T increases
\ 1 /
| |
T T, T, T & t
Tay T=4T1
Discrete
o 2sin(kwel)) frequency
g kwoT points
become
4 denser in w
as T
. 2sinwi] Increases
fi ap = T

w=kwg
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« Then for EerIOdIC sguare wave, the spectrum of xét) l.e. {a},
are g sin(ka,T,) , the spectrum space is g, =

k —
K, T

) .
» Then for square pulse, the spectrum X(jw) are Hinel)  he
spectrum space iIs —?—>0 l.e. the complex exponentlals

occur at a continuum of frequencies
X {jau)

x{t)

<
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4.1.1 Development
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- To derive the spectrum for aperiodic signals x(t), we can
approximate it by a periodic signal x()with infinite period

T

’/_\

A

X(t)

/\‘

-T1

T1

A

]

X (t)

limX(t) = x(t)

T —o0

D

T1
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r(t) = Ikt Wy = —
i) = Y we (w0 - 2)
1 (2 1 /%
ap = ”[ :f:(f;)e_jkwutdt:/ m(t)e—jkwgf,dt
1 J_= T | =
2 2
T
Z(t) = x(t) in this interva
L [ .
= ?/ x(t)e IRwot gt (1)

Assuming (1) is converged, we define

X(jw) 2/ x(t)e 7t dt
then Eq.(1) =
_ X(jhwo)

(L. T
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e Thus
. 1 .
%(t) = Z aelk@ot = Z?X(jkwo)efk‘“ot
7

k

1 N ; jkwot
=5 z X(Jkwy)e!" ot w,

k=—o0

e« WhenT - oo

x(t) = %j X(jw)e/*tdw

x(t) = %ffoooX(jw)ejwtdw Synthesis equation

(00}

X(Gw)=[__ x(t)e J@tdt  Analysis equation
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4.1.2 Convergence

- What kinds of signals can be represented in Fourier
Transform (satisfies one of the following 2 conditions)

= 1. Finite energy
/ 2(t)2dt <

Then we are guaranteed that:
* X(jw) is finite
[ le®Pdt =0

(e(t) = 2(t) —x(t) 2@ ==—[" X(jw)el“ dw)

21TV —
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= 2, Dirichlet conditions, require that

- x(t) be absolutely integrable

» x(t) have a finite number of maxima and minima
within any finite interval

» x(t) have a finite number of discontinuities within
any finite interval. Furthermore, each of these
discontinuities must be finite

Then we guarantee that

» X(t) is equal to x(t) for any t except at a
discontinuity, where it is equal to the average of the
values on either side of the discontinuity

+ X(jw) is finite




m " Institute of Media,
. .11 Information, and Network

Examples

- Exponential function
z(t) = e “u(t),a >0

X(jw)

Magnitude Spectrum

IX(jo)l = 1/(a%+ )"

1/a

| 1
-a a ()

Even symmetry

1

If a is complex, x(t)
is absolutelty

integrable as long
4 \,\ as Refa}>0
e i

—ate—iut gy

/ m(t)e_j""tdt=/ €
— 00 0 ~

_ (L) (atie
a-+ jw

e—latjw)t
=0

0 o+ jw

t

Phase Spectrum
X(jw) = -tan”(w/a)

-m/2
Odd symmetry
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x(t) = e

i

, o >0 o XY(o) =

2
a +
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Examples
 Unit impulse
x(t) = 8(¢t)
X(jw) = f S(t)e /¥tdt = 1
» DC Signal
x(t) =1 X (jo) = 2725(w)
1 o 1
-.-Zja(w)e ola)zz
% & 5()

16 276(w)
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Example

- Rectangle Pulse Signal

1L Jt|<T, . sin @,
X(t) = X =2 L=2T.S_(wT
( ) O, ‘t‘ >-I-1 A\ g (_]C()) o 1 a(a) 1)
X{jw)
x{t) 2T,
<> .
-T, T, o " ﬁu"’;
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- For a periodic signal x(t) with fundamental

27

frequency o, =7, what’s its FT?
wXx(t) =) ae’
k
S 3x®1= 3D ae’ =) a, I’ ]
k k

the question becomes: a Jkapt <> ?
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- Thanks to the impulse function, suppose
X(jw) = 6(w — wyp)
1 ™ . 1 .
x(t) = —f §(w — wp)e/Pdw = ——e/®ot
21 J)_, 2T
- Thatis e/®t & 26 (w — wop) — All the energy is

concentrated in one

frequency — w,
* So

x(t) = z apelk®t o X(jw) = 2 2nag, 6(w — kwg)
K

k



N B amm A T S
m " Institute of Media, R am i R\
. .11 Information, and Network _—— -

» So for a periodzic signal x(t) with fundamental
frequency @ == ,1its FT is:
= Fourier Series Coefflclent

X(t) _ Z akejka)ot

= j__ x(t)e et gt

= Fourier Transform

X(t) < X(jo) = 3 278,6(0—kay) o, ="

k=—00
« The FT can be interpreted as a train of impulses
occurring at the harmonically related frequencies and for
which the area of the impulse at the kt harmonic
frequency kw,, is 27t times the kth F.S. coefficient a,
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- Example: X(t) =cos(mpt)

| | d
x(t) Lo Lo &
2 2 12 |
1
d al — a‘—l = E ‘ ‘ >
-1 1 k
a =0, k=1 t X(jo)
X(Jo) =7[6(w—my)+6(0+ )] [ [ .
— @ Wy 0,

Similarly:

sinayt <> ja[o(w+ @) —5(w—a,)]
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- Example: X(t) = i5(t —KkT)

ta,
T/2
x(t) « ap = — x(t)e Ikwotgr — —
S
27 k27w k™
X(jw) = Z 7 S ) X (jo)
=00 "~ ~——
2way kwo
Z&(t—kT)<—>a)025(a)—ka)o) ‘ ‘ A ‘ ‘
- -
0,

Same function in the frequency-domain!
Note: (periodint) T < (periodin w) 21/T
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 Linearity
X(t) < X (o) y(t) <Y (jo)

ax(t) + by(t) < aX (jw) +bY(jw)

 Time Shifting
X(t) < X(jo)

X(t—t,) e ' X(jw)
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- Time and Frequency Scaling
X(t) & X(jw)

X(at) <> —— X (A%
jlal] a

for a=-1 X(—1) <> X(—jw)
compressed in time < stretched in frequency

X(at+b) <> ?

1 a)b
x(at+b)<—>ﬁX( )e a
a
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- Example: Determine the Fourier Transform of the
following signals

1. X(t) =e*'u(t)
2. X(t) =e " Pu(t)

3. X(t) =e*'u(t-1)
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- Differentiation

x(t) < X (jo)

dx(t)

X
O JoX (o)

- The differentiation operation enhances high-frequency
components in the effective frequency band of a signal

- Without any further information about the DC
component of the original signal, we cannot completely
recover it from its differentials
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. Integrationt
g(t) = [ x(z)dz x(t) < X (jw)

g(t) = x(t) *u(t) <> G(Jw) = X(Jo)U (jo)

where u(t) is the unit step function, defined as

Au(t)
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su(t)
1+sgn() 1
. +sgn R
cu(t) = . . .
Asgn(t)
X(t) =1 X(jw) = 276(w) )
.y _ 2 O .
+ 2(8) = sgn(®) © X(jo) = — o
-1 Odd
functio
1 \DC
U(Jo)=—+7rd(w)
Jow 1

v




m " Institute of Media, ; : I 1
. .11 Information, and Network |
su(t)
1+sgn() 1
. +sgn R
cu(t) = . . .
Asgn(t)
X(t) =1 X(jw) = 276(w) )
.y _ 2 O .
+ 2(8) = sgn(®) © X(jo) = — o
-1 Odd
functio
1 \DC
U(Jo)=—+7rd(w)
Jow 1

v
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U (o) =_i+7z5(a))
Jw

according to:

g(t) = x(0)*u(t) < G(Jw) = X(Jo)U (jo)

g(t) = jx(r)dfee(jm) =jixqa))+7zX(0)5(w)
e ),

The integration operation diminishes high-frequency components in
the effective frequency band of a signal
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- Example: triangle pulse

( ENG!
1_2|t|’ |t|££ 1

XA(t)ﬂo T |t|>T)2 T T=
\ 2 2 2

X, (t) <> X,(jo) -

X (jw) = lefi)“’) + 72X, (0)5 ()

since X,(0)= j X, (t)dt =0

8sin2(“")

; T T
X(J&)): (022-4 =§Sa2(7) T
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» 2 approaches to calculate X(0) :

1. X(0)=X(jo)|,
2. X(0)=| x(t)dt
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- Example: sgn(t)

1, (t>0)
-1, (t<0)

X(t) =sgn(t) = {

A Sgn(t)

v




m " Institute of Media,
. .11 Information, and Network

- By defining the sgn function as a special

exponential function F (0
1
-at
X (1) = e ™, (t>0) 00 k
—e“, (t<0) 0
sgn(t) = limx, (t) j
2 -1

-.sgn(t) « I|mX (Jo)y=—
- By representlng the sjgn function in terms of unit
step functions

sgn(t) =u(t) —u(-t)
2

-.sgn(t) & (76(w) + .i) —[76(-w) + L.] =—
jo —-jo jo
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- By exploiting integration property

osgn(t) =2u(t) -1 -.sgn (t) = 26(t) = x, (t)
dx(t)
dt

When x(-<}#0 j X, (t)dt = x(t) — x(—0)

Suppose X (t) = - X, (Jo)

() = j X, (t)dt + X(—o0)

S X(Jo) = Xy j(cjow) + 72X (0)0 (@) + 272X (—0) 0 (w)
2

X (o2 SI() = =+ 7 26(@) + 27 (1) - 5(0) = —
Jo jow
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 Duality
= Both time and frequency are continuous and in general aperiodic

t) / X(jw)tdw
— Same except for

these differences
X(jw) = / t)c.”df

|
= Suppose f() and g() are two functions related by

f0)= [ gmeian
Let 7=t and r = w: z1(t) = g(t) «—— X (jw) = f(w)
Let 7= —w and r = t: ro(t) = f(t) — Xo(jw) = 2mg(—w)

X(t) > X(Jo) | X(t) <> 22x(— jw)
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- Example :
sinWit _ L ol <W

— X —
x(t) —© (jo) 0, lof>W

%, {t)

]

'T‘I f1

(9 Xpjuu)

—W w ™
B 4.17 (4.36) 4370 R o e > maysE
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- Example x(t) :it
T

21 jo w+#0

X(t) =sgn(t) <« X(Ja)):{ 0 w=0

X(Jo) =—])sgn(w)

1
° Xt —
Example Xx(t) Tt
x(t)=e_0’|t| yRe{a}>0 < X(Jw)= 22a
of +o°

ol

X(Jo)=7e
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 Other duality properties
= (1) Frequency Shifting

X(t) < X(Jow)

e x(t) & X(j(o-a,))
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- Example:

T

. 1
SIN C()Ot = 2—J

1. B
cosa,t = =[e!™ +e ']
.

O(w—w,)+o(w+w,)]

'e jogt e—ja)ot]

&> %[5((0—&)0)—5(a)+a)0)]

= Jz[6(o+ ) —6(w— )]
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= (2) Differentiation in frequency domain

dX(jw)
dw

dX (jw)

@

— Jtx(t) <

tx(t) < |

= (3) Integration in frequency domain

—% X(t) + 2X(0)5(t) <> T X (A)dA

when x(0)=0, X(t) > —] j X(A)dA
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- Example: x(t) =te™u(t) <>?

1
2+ Jo
d 1 1

stelu(t) o —
(® Jda)(2+ja)) (2+ jw)*

ceu(t) «

X(t) =te'u(t—1) «?
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- Example :To determine x(t) according to X(jw)
X(Jo) Hints: To exploit the

1 differentiation property in
frequency domain

v

p 7 ) X () <> %, (t)
x(t) = X1<jtt) 4+ 7%, (0)S (1)

v

AR X% 0)=[ X (jw)dw=0
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- Conjugation and Conjugate Symmetry
X(t) <> X (jw)

X"(t) & X (- ]w)

If x(t) is real valued

X(Jow)=X “(— Jw) —Conjugate Symmetry

o X(ao)=Re[X(Ja)]+ I, [X()o)]
Re[X (Ja)]=Re[X(-]w)]
Im[X(jo)]=—Im[X(-]o)]
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2 X(jo) 3 X(jw) |0

| X(jo)|=| X (-jw)|
X (jo)=—2X (= jo)

@ X(t) realand even «s X(jw) real and even
X(t) real and odd <> X (jw) purelyimaginaryand odd

(0 =5 DX + X(-0] > RelX (joo)]

(0) = 21O - X(D] & 1, [X (jo)]
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- Example:
X(t) =e " =e“u(t) +e“u(-t) = 2E {e “u(t)}

1
o+ o

ceTu(t) o

1 20
o X(1) o 2Re = _
(t) {2+ja)} a2+a)2‘a_2
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» Parseval’s Relation

[IOF dt= - [ (o)Fdo= [| X (D)o

| X ()
_ , ——Energy per unit frequency (Hz)
| X(Jo)]|
—Energy density Spectrum
and: |im1j| “O dt= L [1im! XUy
T—)ooT T 272'_ T >0 T
o X (o) P
T—>w

——Power-density Spectrum
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- Examplei: , X (j)
Lz
X(t) <> Sz /2 To determine J-| x(t) |° dt
-1 -0.5 0.5 1 :

- Example2:

X(t)= SintZt To determine j| X(t) |2 dt
T
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E le: To use the FT of typical signals and FT
* bXample: properties to determine the FT of the following
signals

A X(t)

2
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« Solution 1:
X(t) =29, (t)+u(-t—-2)+u(t-2)

Vv
Vv

19, (t)

g (1) is the rectangle pulse with width of 7
and unit magnitude
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- Solution 2:
Assuming : X, (t) = X (t)
X (t) & X, (Jo)

Then X (jw) = 22U | 1x (0)8(0)+ 27x(—0)5(e)
(0] .
A X (t)

:

2

\%
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- Example: To determine the FC of the periodic

signal by using FT
A (1)
>
B T AU
2 2 2
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» Let () < R(@)be the basic signal

Af, (1) A fo (©) , i
' 2 T ;
> Ty > >
o T,/2 O 1,42 OP&
V T1

fo (t) =T35(t)—_r£5(t—%)—§'(t_%)

1 1

1
e Fn — -I-_1 |:0 (0)) |a):na)1
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- Example :To determine x(t) according to X (jw)

. A X(Jo)| L X (jo)
A Notes: They
have different
& " specrom
-, 0 O@Q
|
L X (jo)] L X (jo)
2. A wl?2
_ .
—0)0 a)O W> a)O ’
—7l2
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4.4.1 Convolution Property

nw(t) X (o) x ()X, (jo)

x(7) = x,(7) * x,(7)
X(jo)= Xl(jm)-ﬁfg(jm).
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- Example: the Triangle Impulse Signal

] 2\t
E(l- i
x, (1) =+ g _
0. 1> —

2

T
J <=
AL

& xﬁ_ (E":] & i

-q|[§

tal =
d=| =

| =
oy

=] =
|




Institute of Media,
Information, and Network

M.l

4.4.2 Frequency Response

« Definition:

x(1) X .-'T} (I) ¥(1)

y(t) = x(2)*h(t)

x(t) e X(jo) v(i)e Y (jo)

H(jw) = j,f;(f)g_i'“dr ‘ —frequency response

Conditioned on: Hh(’[)‘dt < 00 —stable system

—00

Then: Y (Jo)=X(Jo)H(Jjw) [ H(ja)):Y(ja))

X(Jo)
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4.4.2 Frequency Response

» The frequency response H(jw) can completely represent
a stable LTI system (NOT all LTI systems)

—  H;(w) Hy(w) ——<—>— Hi(w) Hy(w) r—

A 4

Series interconnection of LTI systems (Cascaded system)

H;(jw)
— = Hyw) + Hyw)
H,(jw)

Parallel interconnection of LTI systems
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4.4.2 Frequency Response

- The frequency response is the F.T. of the impulse
response, it captures the change in complex amplitude of
the Fourier transform of the input at each frequency w

H(jo)=|H(jo)e <2
/

Magnitude gain Phase shifting

= For a complex exponential input x(t), as a consequence of
the eigenfunction property, the output y(t) can be expressed

“x)=e > yt)=H(jo)|,., e
> For a sinusoid input x(t), as a consequence of the
eigenfunction property, the output y(t) can be expressed as:

X(t) = cos(w,t) = y(t) =|H (jay)|cos(@,t + LZH (jo,))
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» Example: Consider an LTT system with HU®) =17
If the input x(t)=sin(t), determine the

output y(t)
« Solution:
H(jo) = 1 i i :
e e y(t) =[H (j)[sin(t + ZH (j1))
. 1 1 T
- |H = _ - T
H(jo) — _ﬁsm(t 4)

JH(jo)=tan " (-w)
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- Example: Consider an LTI system with

h(t) =e"'u(t)
for the input x(t)
X(t) =e*'u(t)

Determine the output of the system

y(t) = x(t) *h(t)
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- Example: for a system with Gaussian response, i.e. the
unit impulse response is Gaussian, consider the output
of the system with a Gaussian input

T Y i al 2

e atl % € bi — -? il = {n-H-;JL
a-+b

'TT i f; '\-ﬁ'j ?I._ ] {.l_'_L

,II_E da W \/—E‘ 40 — ,.'—_t' 1 La [
il h \I;”h

Gaussian X Gausslan = Gausslan = &, csian * Gaussian = Gaussian
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Why: Log-Magnitude and Phase to illustrate the frequency

response
x(1)

h(t)

y(1)

Y ()| = [H(w)| X [X(jw)| }
Easy to add
log|Y (jw)| = log|H(jw)| + log|X(jw)|

tY(jw) = 2H(jw) + £X(jw)

Cascading: —

H,(jw)

H,(jw)

tH(jw) = £H{(jw) + £H,(jw)

log|H(w)| = log|H,(jw)| + log|H,(jw)|
Easy to add
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How: Plotting Log-Magnitude and Phase

- a) For real-valued signals and systems

H(—jw)| = |H(jw)| Plot for w 2 0, often with a
E _ : = logarithmic scale for
LH(—jw) = —LH(jw) .
frequency in CT
- b) For historical reasons, log-magnitude is usually

plotted in units of decibels (dB):

(1 bel = 10 decibels = DEEE'E If'(?‘ff: = 1{}) Why 20 log,,(.)
» Power - magnitude
10logy [H (jw)|* = 20log,o | H (jw)

H(jw)| = 7 0dB So... 20 dB or 2 bels:
H(jw)=v2 — ~3dB = 10 amplitude gain
H(jw) — — % ~6dB = 100 power gain
H(jw)l =10 — 20dB

H(jw) =100 —  40dB
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- A Typical Bode plot for a second-order CT system
20 log, ,|HGw)| and « H(w) vs. log, ,®

Institute of Media,
Information, and Network

20 logo IH(jo)]

Z H(jo)

20
10
0dB
-10
-20
-30
-40
-50

1
S

10 100 1,000

|
10 100 1,000
 (rad/s)
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4.4.3 Filtering

— a process in which the relative complex magnitudes of the
frequency components in a signal are changed or some frequency
components are completely eliminated

- Frequency-Selective Filters
—systems that are designed to pass some frequency components
undistorted, and diminish/eliminate others significantly
« Typical types of frequency-selective filters
= LPF(Low-pass Filter)
= HPF(High-pass Filter)
= BPF(Band-pass Filter)
= BSF (Band-stop Filter
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[H(jo)

ﬂlll

«— stopband —» |« pasgband »

v

cutoff frequency

v

H(iw)={

H(jw)={

cutoff frequency

»
|

1, ‘a)‘ < o,
0, |o>a,
L o> o,
0, ‘a)‘ <,
L o< oylo 2 o,

0y <|o| < @,

upper cutoff frequency
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- Example : t X
1
| | .
-1 -1/4 1/4 1 t
tH(jo)
7T
-3 3 W

To determine the response of the LPF to
the signal x(t)
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- Some typical systems
- (U Delay - y(t) = x(t-t,)
“Y(jo) =X (jo)e

Y(Ja)) e—ja)to

H(jw) =
X(Jjw)
s (2) Differentiator
y(t) = dx(t)
.-Y(Ja))—ja) X(jw)
L Y(je)
H(Jw) = —=]o
X(Jow)
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= (3) Integrator

t

2 y(t) = [x(r)dr

Y (Jo) =

[e¢]

—Q0

when x(©)= [x(t)dt=0

—0o0

XU®) | X (0)5()
jo

H(jo)=

Y(jwo) 1

X(jo) jo




]
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- Example: to determine outputs of the system
with HGw) in the figure with the following input
signals

1.

x(t) =e’

1

A H(]C())

X(Jo)=

(Jo)(6+ )o)

v
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- Example: for the following signal x(t) with

period of 1

X(t) =+

sin27zt,m£t£(m+%)

O,(m+%)£t£m+l

H(jw):é—j(—3ﬂ£w<3ﬂ)

To determine the output of the system with
frequency response H(jw) with the input x(t)
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» Solution:

wX(t) > 27 Zak5(a) —Kkaw,)
k=—0

27T
and 090 = —i:— :::27T

. x(t) contains the frequency components: 0, +27,+4r,--
1
¥ t
H(jow) <— WO | pifere | YU
ntiator

A

v

-3 3

Only the DC and the first order harmonic components are within
the passband of the LPF
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Filters

- Zero-phase shifting Ideal LPF

4 H(jo)

H (i) 1l |oko,
) =
J 0, |o|> o,

v
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Unit impulse response Unit step response

hl:t} 5”}

(a)

- 1 1 .
h(t) _ SIn a)ct S(t) = —+—Sl(a)ct)
7t 2 7T
., Sinwt where oo
T ot Si(y) = [~ —dx
sina,t

The unit impulse response of the HPF is h(t) =o(t) -
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» Linear Phase Ideal LPF

H(jo)=¢e'", |oKae,

4 |H(jo)| s+ ZH(jo)
—» _a)cl i @e ]
-, @,
_ 1l |oKo, JH(iw) = —at <
|H(jo)|= (Jo)=-aty, |ol<eo,
0, |ol> o,

. time-shift
Y(jw) = e 7?0 X(jw) +— y(t) = x(t — to)

Result: Linear phase < simply a rigid shift in time, no distortion
Nonlinear phase < distortion as well as shift
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= Unit impulse response:

_sina, (t—t,)

"=

= Unit step response:

(1) :%+%Si[a)c(t—to)]
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- How do we think about signal delay when the phase is nonlinear?
Concept of Group Delay

When the signal is narrow-band and concentrated near w,, <H
(Jw) ~ linear with w near w,, then the differential of ~4H (jw) at w,
reflects the time delay.

For frequencies “near” w,
LH (jw) ~ LH (jwo) — T{wo)(w —wo) = ¢ — T{wo) -w

B d

T(w) = 1£H(jw)} = Group Delay

I

dw

~ Forw “near” wj - i T(wo)w
. — . iy LT aTLeN

H(jw) = |H(jwo)|e' e T(w,)Time delay of

the original signal

= %' — ~ |H(jw)|el et o))
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« Non-ideal LPF

Information, and Network

TH(jo)|

v

MOl

T /H(jw)

8"

ZH(jo) = tan‘l(g)
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Unit impulse response Unit step response
A h(t) A S(t)
1
o 1-e™ s

1 f >

d { 1

o i t
a

h(t) = ce “u(t) s(t) = (1—e “)u(t)

« causal h(t<0) =0, decaying
« s(t) non-oscillation and non-overshoot
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- Time domain and frequency domain aspects of non-ideal filter

Definitions:
Definitions: Rise time: t,
Passband ripple: 9, Setting time: t
Stopband ripple: o, Overshoot: A

Ringing frequency w,

» Trade-offs between time domain and frequency domain characteristics, i.e. the
width of transition band <« the setting time of the step response

Mo} o
- R Setting
b F T | : time
(s 1 : I
b I i . . E
Vo : . | Rise time :
Passband Transition Stopband '
S i :
S i !
Bs : Sy | |
1 ¥ \,i -!'- -y o i :
0 wp ke w t, te

Setting time: the time at which the step response settles to within 6
(a specified tolerance) of its final value
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Topic

O4.0 introduction

4.1 The Continuous-Time Fourier Transform

4.2 The Fourier Transform for Periodic Signals

04 .= Properties of the Continuous-Time Fourler Transform

L4.4 The Convolution Property

O4.5 The multiplication Property

4.6 system Characterized by Linear Constant-Coefficient
Differential Equations
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T

(.01
4.5.1 Multiplication Property

% (1) & X, (Jo) X, (1) < X,(Jo)

X(t) = X, (£) - X, (1

X(jw)=%[x1<jw>*x2<jw)]
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- Example :

v

o
N |

X(t) = Esinat[u(t) —u(t —%)]
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- Example :

A 1 t 1
sint >IN 2
° H H >
bl > it 172 1/2
1 1 A
1/2
sin t
1 sint 2
X)) o — - H{J] 1*3[—=]} = | | )
27 ul t 312 112 12 312
Then i 1
SInt-sin—
[———2dt=2
7t
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- Example :
r(t) =s(t) X P(t) © R(jw) = [S(Jw) P(jw)]

For p(t) = coswot & P(jw) = n[§(w — wy) + 6(w + wy)]

1
R(jw) = > [SU(w — wg)) + S (w + wy))]
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4.5.2 Modulation

x(1) » » Transmitted Signal

Carrier Signal

« Why?

m]

[m]

m]

[m]

More efficient to transmit E&M signals at higher frequencies

Transmitting multiple signals through the same medium using different
carriers

Transmitting through “channels” with limited passbands
Others...

- How?

u]

m]

Many methods
Focus here for the most part on Amplitude Modulation (AM)
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Modulating

S(jo) signal
r(t) = s(t) - cos(wot) -4 01 Carrier
Amplitude modulation signal
(AM) T P(jo) T
0o o ® Modulated
signal
1
R( g = —[S(lw—u ina:
(jw) 5 (..1 (w—wp)) RGo) = 1S - PGl assuming:
+S8(j(w + wo))] . wo — wy > 0
A A 1.€. Wp = W
T -y T T o ®

(-wp - @) (- + 1) (g - @) (W + )
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« Synchronous Demodulation of Sinusoidal AM

H(jw)
2

16 =0 Y () o > r(t)
Il

() = x.(t) X c(t)  xtcoswet T " L

cos(oct + 8) Lowpass filter

Local oscillator

o 1
X(w) =X (o) * Clw)]

: V(o)
=5 [Xc(j(a) - wo)) + Xc(j(a) + ‘UO))] /\3|

=lx(' )_|_1 X ( -2 ) + ~We (We—wy  we (Wt wy) w

! L X ((w + 2wp))] :

What if 6 = 0? =] TN

—2W¢ W —wy wy W (Rwc wy) 2w, w
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» Synchronous Demodulation (with phase error)
in the Frequency Domain

cos(w .t + 0) & mel?5(w — wy) + me 7?5 (w + wy)

-20, =00 O (2o-my) 20 @
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« Asynchronous Demodulation
s Assume w_>> w,, SO signal envelope looks like x(t)
= Add same carrier with amplitude A to signal

x(t)—>®—>@—> y(t)=(A+x(t)) cosmgt
A

A y(t)

il

Y Envelope=A+x(t)

o
|

o VVY |
/T\ ﬂt /T\ Time Domain

Frequency Domain

A = 0 = DSB/SC (Double Side Band, Suppressed Carrier)
A > 0 = DSB/WC (Double Side Band, With Carrier)
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In order for it to function properly, the envelope function mustbe
positive for all time, i.e.A+ x(t) > o for all t.

Demo: Envelope detection for asynchronous demodulation.

Advantages of asynchronous demodulation:
— Simpler in design and implementation.

Disadvantages of asynchronous demodulation:
— Requires extra transmitting power [Acosw, t]*to make sure A+
x(t) > o >Maximum power efficiency = 1/3 (P8.27)




Institute of Media,

m . ," Information, and Network

- Example:

y, () _
< 1 Ho) Y0}
cos5t [ H(jo)
sin 2t
For X(t) = :
bl . -5 @
@)
O

To determine  Y(t)

Signal processing in
frequency domai
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» Double-Sideband (DSB) and Single-Sideband (SSB) AM

Since x(H and

X(Jos)

are real, from
Conjugate
symmetry both

7.\

£\

(a)
Y(jw)

|

LSBand USB
signals carry

exactly the
same

Upper ! Lower |

sideband sideband

(b)

Yy(jw)

7\

“Lower | Upperr
sidebandsideband

information.

(©

Yi (i)

|

(q)

DSB, occupies
2w,.bandwidth in
w> 0.

Each sideband
approach only
occupies
wybandwidth in
w> 0.
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- Single-Sideband (SSB) AM

DSB
X(1) ———> @ >

H(jw)

LSB

sideband sideband

Can also get SSB/SC
or SSB/WC

sideband sideband
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- An implementation of SSB modulation, p60o0,figure 8.21-22

cos w1
_é (1)
t
x(?) S y(1) _
N ]
x, (1)
» H(jo) >
(% »,(1)
Hilbert sin &t
Transform
_ -] w>0 1
H(jo)=] ° & hi)=—
+] <0 it
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- Frequency-Division Multiplexing (FDM)
(Examples: Radio-station signals and analog cell phones)

cosm,t
ol ——() Ya(t) All the channels
can share the
Goe ! same medium.
Yo(t)
Xb(t)—>®
air
cos Mt

l

Xg(t) ——>
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- FDM in the Frequency-Domain

Xaljw) Xoljw) Xc(jw)
dh 1 AN
Wy Wy W Wy Wy W —Wy Wy G
Ya(jw)
A A
Wy Wy
Yoliw)
[ )
Wy Wy w
Yeljw)
.(.Jc . ‘;’c w
Wi(jw)

T “Wp - hla Wy Wy (A)c w

“Baseband™
signals

Channel a

Channel b

Channel ¢

Multiplexed
signals
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» Demultiplexing and Demodulation

- Demultiplexing - < Demodulation -
Bandpass Lowpass
filter COS wy! filter

H; (jw) 1 Ha(jw)

t
w(t) J(‘ Yalt) - ()—> 2 (1)
| l

g Wg W WM Wpp W

ds to be tunabl :
= Channels mustwﬁr(l)qte()Sv(érfalf)n%%andmdth

Allocation

s It is difficult (and expensive) to design a highly
selective bandpass filter with a tunable center
frequency

= Solution —Superheterodyne Receivers
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« The Superheterodyne Receiver

—_ | Local
we Oscilator

l \COS(U’G""-UIFM
ﬁ?lgrtﬁg o2 seFlgcatﬁ-'e r(t) To
YO ——1 e &, fiter [ demodulator
H(jw) Ho(jo)
Y(jw) _ o
Input signal Y(jm) AM, —<=535-1605kH- — RF
1 - 2
@
FCC: 2—”’ = 455kH> — IF
; . . T
Hy (i) W|F (e-om) we (e+op) wQo ®
Hz(jw)
K
G
OeOT  GrOM O optoy  OcOT © a ®
Coarse tunable filter Fixed BPF

= (peration principle:

— Down convert from wc to w, and use a coarse tunable BPF for

the front end.

— Use a sharp-cutoff fixed BPF at w to get rid of other signals.
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4.5.3 Sampling

« Most of the signals we encounter are CT signals, e.g. x(t). How do we
convert them into DT signals x[n] to take advantages of the rapid
progress and tools of digital signal processing

= — Sampling, taking snap shots of x(t) every T seconds

« T —sampling period, x[n] =x(nT),n=...,-1,0,1,2, ... —
Regularly spaced samples

 Applications and Examples

: —Digital Processing of Signals
: —Images in Newspapers
: —Sampling Oscilloscope

m] —_—

How do we perform sampling?
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« Why/When Would a Set of Samples Be Adequate?

= Observation: Lots of signals have the same samples

Xa(t) xq(t) xo(t)

1 | i
-3T 2T -T 0 T 2T 2T t

= By sampling we throw out lots of information —all values of x(t)
between sampling points are lost.

= Key Question for Sampling:
Under what conditions can we reconstruct the
original CT signal x(t) from its samples?
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« Impulse Sampling—Multiplying x(t) by the sampling function

o0

p(t) = Y  6(t—nl)
zp(t) = x(t)p(t) = i x(t)o(t — nT) = i x(nT)é(t — nT")
T Pt T
l
x(t)—>®—..xp(t)
/NN
T p(1)
ERNEES

T ; ©) x(T)

[ %)
RRGALS

0 t
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 Analysis of Sampling in the Frequency Domain
zp(t) = 2(t) - p(t)
1

Multiplication Property => X, (jw) = 2?er(ju.;) x* P(jw)

P(jw) = 2% Z O(w — kws)

k=—o00

ws = —  =Sampling Frequency

Y

X(jw) * 0(w — kws)

e

-

\
|

M 1

X(j(w — kws))

=)=
o
ill

o0
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« Illustration of sampling in the frequency-domain for a band-limited
(X(Gw)=o0 for |®| > wM) signal

X(jw)
/\
—op M ®
P(jo)
X,(jw) drawn assuming — -20s -0 0 ©, 205 3us ®
— WM > WM Xp(iw) X(jo)*P(jw)/2m

/\/\/\/\/\/\

om 0 omt ws
No overlap between shifted spectra (ms M)
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 Reconstruction of x(t) from sampled signals

p(t) = 2 §(t - nT) X(jo)
i 1
t
x> (—2Y | Hjoo) - x,(1) o > _
Xp (j)
'1T W>20\
If there is no overlap /J\ A
: Tes em owf e o
between shifted Ml (@s-om)
spectra, a LPF can T oM <0 <(025 o)
reproduce from x =
p x(B) from x, (8 e .
Xr (jo)

-OM oM ©
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Suppose x(1) is band-limited, so that
X(jw)=0 for |w/ > w,,
Then x(?) is uniquely determined by its
samples {x(nT7)} if

where w, = 211/7T
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» Observations

= (1) In practice, we obviously don’t
sample with

impulses or implement ideal
lowpass filters

— One practical example: The Zero-
Order Hold

= (2) Sampling is fundamentally a
time varying operation, since we
multiply x(t) with a time-varying
function p(t). However, HGjw) is the
identity system (which is TI) for
band-limited x(t) satisfying the
sampling theorem (w, > 2w,,).

s (3) What if o, <= 2w,,? Something
different: more later.

p(t) = 2 §(t - nT)

xm—»{gﬂ» H(jo) > Xr(t)

H(jw)
T WM <0¢ <(Ws -0n)
W Oc @
/,‘, I . Xp (1)
t

Xo (t)=xp (t)*ho(t)
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]

Sampling Theorem:

Let us be a band — limited signal with X (jw) =0 for || > @,. Then
X(t) is uniquelydetermined by its samples x(nT,), n =0,£1,%2,..., if
W, > 20,

27
where @, = —

S

Giventhese samples, we can reconstrud x(t) by generatinga periodic
Impulsetrainin which successiveimpulse have amplitudesthat are
successive sample values This impulsetrainis then processed through
an ideal lowpass filter with gainT and cutoff frequency w.. If

W, — 0, >0, > 0,
the resulting output signal will exactly equal x(t).
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- Example:
Consider a band — limited signal x(t) with X (jew) =0 for |a|> @,
Determinethe Nyquist rate for the following signals:
(1) 2x(t) +1

(2) x*(1)

dx(t)
TS
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- Time-Domain Interpretation of Reconstruction of Sampled
Signals —Band-Limited Interpolation

p(t) = £ 3(tnT)

x(t)gch"(i T - %,{t)

-, o,

M <0¢ <(0g ~wp)

z.(t) = a,(t)*h(t) , where h(t) =

( > :r(nT)é(t—nT)) « h(t)

T sin w,t

7t

— RZZ:OO z(nT)h(t —nT) = n;oo z(nT) d Sli[gc_(tn}?ﬂ]

The lowpass filter interpolates the samples assuming x(t) contains no

energy at frequencies >= w,
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« Graphic Illustration of Time-Domain Interpolation

= Original CT signal
x(t)

= After Sampling

= After passing the LPF




m " Institute of Media,
. .11 Information, and Network

- Interpolation Methods (1): Band-limited Interpolation: ideal LPF,
i.e. sinc function in time domain

X, (t) =3 x(nT.)-6(t—nT,) * == Sa(w,7)
- T

=Y Zex(nT,)- Sal, (t—nT,)]
N T

{¢)
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- Interpolation Methods (2): Zero-Order Hold

PO % (1)

[ »
» »

2sIn(awT /2)]
),

Ho(jw) =e7"""[
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H(jw) — Ideal interpolation filter (LPF)

t 1hy (£) Reconstruct filter
0 o A0 O
TX/ "'h (t) o H, (jo) 0
| !
o)
: H(jo) e ?2-H(jw)
H = = —
(o) H,(jo) 2sin(wl/2)

)
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- Interpolation Methods (3): First-Order Hold —Linear interpolation

4 (1)

v

v

sin(eT /2)]

H,(jo) =2
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« Under sampling and Aliasing

When w, = 2w, => Under-sampling

X(jw)
4

-OM OM (0}
Plo) ~_ 27
2 &=

A I
-2Wg -Mg 0 Ws 20g 3ws ©

Xp(jw)




Institute of Media,
Information, and Network

M.l

o) = .81 r)

x(1) ~() %Ol Hio) (1)
H(jo)
;
............................. ﬂs_ (Bs_m Xr (i(l).)#:X(]:(l))
2 X, (o) 2 Distortion due to
A\ aliasing
s ' o5 ©
2 2

— Higher frequencies of x(t) are “folded back” and take on the
“aliases”of lower frequencies

— Note that at the sample times, x,(nT) = x(nT)
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- Example: X (jo)
X(t) = cos(w,t + D) 4“ T“
-0 o ®
Xp(jo)
Sampling of cosw t \ * --------------- i \ 05=3We>2 0y
B EE R R
- Ws X -wp  Wogg, W5 O
Aliasing case: (Wo-®s) 2 (0s-0)
Then with the ideal LPF with
cut off frequency of w,,< Xp(j®)
W< O,- ®, , the Aliasing | Ws=1.2me<2 0y
reconstructed signal is s T A T A T A T
cos((wgs-w,)t) -0g 7 (gs o (1,)8 ®
Ref. Q7.38 (s~ 0p)
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- Example: AM with an Arbitrary Periodic Carrier

x(t) »ﬁ@ — y(t)

c(t)
({9 — periodic with period 7, carrier frequency w, = 2r/T
Cjw) = QWk_Z;OOak(S(w—kwc) (ak:%for impulse train )
U’ oo
Y(jw) = 5-X(jw)*Cljw) = X(jw)* Y. axdlw k)
jw) = - X(w jw) = X (Jw 2 ard(w — kw,

= Y aX(jw — kw))
N k=—0o0 /
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- Example: Modulating a (Periodic) Rectangular Pulse Train

x(1)

0 t
A
c(t ~
(t s
0 t

y(t) = x(t) - c(t) y(1)

\ (A

In practice, we can use a (periodic) rectangular pulse train instead
of impulses, since the later is impractical
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X(Jow)
1
o0 Wy Wy,
C(jw) =27 E apd(w — kw,) Cljo)
k=—00 | 2mA/T
and . S
A sin(kw.A/2) .
apg = —, arp =
T Vs k "
\"wi ! e ~ t .
for rectangular pulse e PR

Y(jw) = 5: X (jw) * C(jw)

Drawn assuming:
We > 2wnm

' ' = v WV ST
\ Nyquist rate is met Vo2 c ¥ /
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- Discussions on modulating a (Periodic) Rectangular Pulse Train

= 1) We get a similar picture with any c(t) that is periodic with period T
= 2) As long as wc= 271/T > 2wM, there is no overlap in the shifted and
scaled replicas of X(jw). Consequently, assuming a0+0:

1/a,

X() -0——| | ‘ 0
] -0./2 02 ®

4o
c(t) fZ a,eiko

X(t) can be recovered by passing y(t) through a LPF
s 3) Pulse Train Modulation is the basis for Time-Division Multiplexing
= Assign time slots instead of frequency slots to different
channels, e.g. AT&T wireless phones
s 4) Really only need samples{x(nT)} when wc> 2wM=Pulse Amplitude
Modulation
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Topic

O4.0 introduction

4.1 The Continuous-Time Fourier Transform

4.2 The Fourier Transform for Periodic Signals

04 .= Properties of the Continuous-Time Fourler Transform

L4.4 The Convolution Property

O4.5 The multiplication Property

4.6 systewm Characterized by Linear Constant-Coefficlent
Differential Equations
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LTI Systems Described by LCCDE’s
(Linear-constant-coefficient differential equations)
M

Z{Ik d.ir Zbk’ dtk

Using the Differentlatlon Property

déz(t .
2 s () X (o)
Transform both sides of the
N 1
Z - (jw) F‘Y (jw) Z by - (jw)* X(jw) 1) Rational, can use
E—0 PFE to get h(t)
JL 2) If X(jw) is rational
\f o e.g. X(t?=2.cie'at u(t)
Y (jw) = { k=0 b (jw) ] X (jw) then Y(jo) is also
S g an(jw)k rational
N —  — PFE: Partial-fraction expansion

H{jw)
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- Example:

dy()  ,dy() dx(t)
12 +4—= it +3y(t) =——= it + 2X(t)

Jo+2

HUO) = GV +a(jm) +3
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- Zero-state response of LTI systems——Partial-fraction expansion

method
- Example: _ _
H(jo)=— ZJCH.Z = — Jm.z =.A1 +_A2
(jo) +4(jo)+3 (jo+)(jo+3) jo+l jw+3
Let ja)=V
V+2 1
then A = (V+DH ) |,y = ——1, == 1
V+3 2 : 2 2
L H(jw) =- + —
=(V+IH(V) |,cs=——|\o3=—
A= (HHW) |, y= T =
1 1 _
d o e () ~ h(t) = Zetu(t) + =e*u(t)
jo +a 2 2
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- Example: x( =e"u(r) To calculate the zero-state response of the
system discussed in previous example

. . . Jo+2 A, A, A,
ey =HUe) X (o) = 03~ Jorl (jot1?  jot3
1 d d v+2 1 1
— 1)?%Y — — S
1
= 2 = — high-order pole poin
A, =(V+DYV)|,_,= 5 high-order pole point etU) 1-
V+2 1 at]o
A =V+3Y (V)] y= |, == - 4 1 . 1
i i (v+1)° o4 teru(t) < ) da)[a+ja) (a+ jo)’
1 1 1
v 4 2 4 1 4+ 1, 1 5
2Y = + — Sy@) == —tem —— t
(Jo) 0+l (jo+l)?’ jo+3 y) =l e +5te e i)
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« Homework
- BASIC PROBLEMS WITH ANSWER: 4.1, 4.4

- BASIC PROBLEMS: 4.21, 4.22, 4.25, 4.32, 6.21, 6.22,
7.3, 7.4, 8.22, 8.30
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Q& A
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Many Thanks



